
JOURNAL OF COMPUTATIONAL PHYSICS 136, 272–288 (1997)
ARTICLE NO. CP975730

A Numerical Method Using Upwind Schemes for the
Resolution of Two-Phase Flows

F. Coquel,*,1 K. El Amine,*,†,2 E. Godlewski,*,1 B. Perthame,*,1 and P. Rascle†,2
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relations for the two-fluid model. Despite these shortcom-
ings, however, there are a number of situations where theThis work is devoted to the numerical approximation of two-fluid

flow models described by six balance equations. We introduce an two-fluid model is more advantageous (or even necessary
original splitting technique which is especially derived to allow a in some cases) than the mixture model (see [8]). Also,
straightforward extension to various and detailed exchange source

many authors agree on the basic form of the modelterms. When based on suitable kinetic upwind schemes, the whole
(Eqs. (2.1), below), although it lacks some physical proper-scheme preserves the positivity of all the thermodynamic variables

under a fairly unrestrictive CFL like condition. Several stiff numerical ties. The derivation of additional terms has been widely
tests, including phase separation, are displayed in order to highlight studied.
the efficiency of the method we propose. Q 1997 Academic Press A specific concern is that most models presently used in

the large computer codes are based on governing equations
having complex eigenvalues (Wallis model [23]), but com-1. INTRODUCTION
plex characteristics are in general thought to cause ill-
posedness of the numerical solutions. In order to makeAn accurate prediction of two-phase flow phenomena
their models hyperbolic, some researchers introduceis essential to safety analysis of nuclear reactors under off-
formulations for interfacial coupling between the twonormal or accident conditions. In general, the ability to
separated momentum equations, including space and timepredict these phenomena depends on the availability of
derivatives of phasic physical quantities (virtual mass term,mathematical models and experimental correlations.
interfacial pressure; see [2] and the references therein; [16,Among several two-phase flow models, there are two fun-

damentally different formulations of the macroscopic field 21]). Hence, the correct formulation of the basic two-fluid
equations for two-phase flow systems; namely the two-fluid equations and the appropriate closure relations have been
model and the mixture model (see [8, 19]). Here we are discussed during the past and, up to now, there does not
interested in the two-fluid model. It is considered to be exist a commonly agreed approach.
appropriate for the most general and detailed description Our objective in this paper is to develop a simple numeri-
of transient two-phase flows. In the two-fluid model, each cal method capable of predicting two-phase flow phenom-
phase is separately described in terms of two sets of conser- ena with reasonable accuracy, computational efficiency,
vation equations. The interaction terms between two and, following the persistent uncertainties in two-phase
phases appear in the basic equations as transfer terms modeling, the implementation of new terms may be accom-
across the interphases. Because the number of necessary plished without changing the basic solution method. That
closure relations are considerably higher for the two-fluid is the reason why we only treat here the simplified system
model than for the mixture model, much more detailed (2.1). It is solved numerically by using an upwind numerical
experimental data are necessary to develop satisfactory scheme based on a finite volume method. The unknowns
closure relations. However, sufficient experimental infor- are the conservative variables and all the quantities are
mation for developing reliable closure relations for the computed at the centers of the cells. In a work under
two-fluid model is often not available. Therefore, the pres- progress, coupling terms between the phases are being
ent state of the art in the two-phase flow instrumentation addressed regarding their numerical treatment within the
implies that considerable uncertainties exist in the closure frame of the present method (phase exchanges, accelera-

tion, friction terms, and also real fluids); see [1].
We propose a resolution approach for the two-fluid1 E-mail: coquel@ann.jussieu.fr; godlewski@ann.jussieu.fr; perthame@

model which reduces the problem to classical gas dynamics.ann.jussieu.fr.
2 E-mail: Khalid.El-Amine@der.edfgdf.fr; Paul.Rascle@der.edfgdf.fr. Then we use a Boltzmann scheme involving compactly
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supported equilibrium functions. This method was intro-
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2 DuvDduced at first by Perthame [12] for the resolution of com-
pressible Euler equations. This approach ensures the posi-

1 ptav 5 avrvguv , (2.1.e)tivity of the pressure and of the densities of each phase,
as well as the control of the void fraction which must stay
within the interval [0, 1]. The conservation of total mass, t Salrl Sel 1

u2
l

2 DD1 x Salrl Sel 1
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2 DulD
momentum, and energy is also preserved by this method.
Several numerical tests assert the possibility of computing 1 ptal 5 alrlgul , (2.1.f)
stiff phenomena with our algorithm. For example, we can
compute a separation problem where fronts propagate and av 1 al 5 1. (2.2)
one of the two phases disappears locally. For further meth-
ods on diphasic computations, we also refer to [18, 20] and This system of equations represents the balance equations
the recent extension of the work in [4]. for mass (2.1.a), (2.1.b), momentum (2.1.c), (2.1.d), and

The format of this paper is as follows. In the first section energy (2.1.e), (2.1.f) of the vapor and liquid phases. The
we present the continuous model. Then, we describe our variables appearing in the above equations have the follow-
numerical approach. In Section 4, some stability properties ing meanings (here we set k 5 v, l for the vapor and
are proved and the last section is devoted to the illustration liquid phases):
of the scheme on well-known test cases.

ak 5 volume fraction of k-phase,

rk 5 density of k-phase,
2. TWO-FLUID MODEL OF TWO-PHASE FLOW

uk 5 velocity of k-phase,
The two-fluid model is formulated by considering each ek 5 specific internal energy of k-phase,

phase separately in terms of two sets of conservation p 5 common pressure to the two phases,
equations governing the balance of mass, momentum,

pi 5 interface pressure,and energy of each phase. Since the macroscopic fields
g 5 gravity constant.of one phase are not independent of the other phase,

the interaction terms which couple the transport of mass, These equations have to be supplemented by two equa-
momentum and energy of each phase across the in- tions of state. The standard form of the equation of state
terphase appear in the field equations. The balance for each phase is given by a function relating the density
equations are complemented by the state equations for to the pressure and the internal energy
the two phases and by additional correlations for the
right-hand side coupling terms. The equations contain

rk 5 rk(pk , ek). (2.3)
more dependent variables compared with the number
of equations. Therefore, additional assumptions are nec- In general, there exist no explicit expressions for the
essary in order to close the system of equations. The most relationships in Eqs. (2.3). In practice, they are approached
common procedure (to close the system of equations) is by various explicit forms. But the most general relation is
to postulate equal local pressure values for the two simply a tabular form. From thermodynamic principles,
phases. one can use any pair of thermodynamic variables, for exam-

The simplest macroscopic balance equations for the ple: (pk , hk) or (pk, sk). Also, in the system of equations
equal pressure one-dimensional two-fluid model can be (2.1), the density for each phase is one of the conservative
written under the following form, which can be eventually variables. Therefore, it is computationally easier to deal
supplemented with specific terms for practical applica- with relations under the form
tions:

pk 5 pk(rk, ek). (2.4)
t(avrv) 1 x(avrvuv ) 5 0, (2.1.a)

Since we suppose that the two phases are in pressure equi-t(alrl) 1 x(alrlul ) 5 0, (2.1.b)
librium, we have

t(avrvuv) 1 x(avrvu2
v 1 avp) 2 pxav

pv 5 pl 5 p;
5 (pi 2 p)xav 1 avrvg, (2.1.c)

i.e.,t(alrlul) 1 x(alrlu2
l 1 alp) 2 pxal

5 (pi 2 p)xal 1 alrlg, (2.1.d) p 5 pv(rv , ev) 5 pl(rl , el). (2.5)
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The interfacial pressure pi needs a closure equation, the We expect that they play an essential role in the stability.
But at this moment, we were not able to recover the corre-simplest of which is pi 5 p (see (3.29) below for another

example of closure relation and references). We now sponding entropy-in-cell inequalities (see [5, 7, 11]).
Concerning accuracy, a basic property we need is to behave six equations for the six unknowns (akrk, akrkuk,

akrk(ek 1 u2
k/2)) with k 5 v (vapor), k 5 l (liquid) com- able to recover the classical finite-volume schemes when

only one phase is present (av 5 0 or al 5 0). In particularpleted with the three algebraic relations (2.2) and (2.5) for
ak and p. we wish to treat the most difficult case where one of

the phases disappears (see the first numerical test in Sec-Notice that many simplifications are encountered in
practice (see [19; 8, pp. 85–238]). For instance Sainsaulieu tion 5), i.e. av 5 0 or al 5 0 locally.
[16] and Toumi [21] assume that the liquid phase is incom-
pressible with constant density rl, while the vapor phase 3. NUMERICAL METHOD
is assumed to be an ideal gas governed by the state function

3.1. A Two-Step Approach

p 5 (c 2 1)rvev , (2.6) We develop a new method based on a decomposition
of the system. This method allows us to apply advanced
numerical techniques that have been recently developedwith a constant coefficient (c . 1).
and successfully applied to single phase flows (or com-For simplicity in exposition here, we assume that both
pressible Euler equations). Let us briefly outline the mainphases are described by an equation of state of ideal gas
steps of the method. Being given the state variables at timetype
tn (an, pn, rn

k, un
k) (or the computational variables (mn

k ,
mn

kun
k , En

k )), we proceed as follows.
ek 5

p
(ck 2 1)rk

, (2.7)
Step 1 (Hydrodynamical step). (i) we solve two classical

and decoupled hydrodynamical systems using usual ap-
proximate Riemann solver and (ii) we include the sourcewhere ck is a constant and represents the ratio of specific
term (pixa). Each of these two problems in Step 1 areheat capacities of the fluid k. Typical values for c are c 5
close to a quasi-1D nozzle problem, where a is similar to1.4 for a diatomic gas, e.g. air, and c 5 1.0005 for the
the section of the nozzle. After the first step, we know theliquid. This is reasonable at least, in a first step, when the
quantities mn11/2

k 5 an11/2
k rn11/2

k , mn11/2
k un11/2

k , En11/2
k , and thevapor phase is always present and imposes its compressibil-

pressure of the two phases are different, in general.ity to the liquid phase. Researches are in progress to im-
Step 2 (Restoring equality of pressures). We computeprove these laws.

an11
k , pn11, rn11

k , en11
k in order to restore the equality of theIt is very difficult to solve numerically the system of

pressures between the two phases.Eqs. (2.1) as it stands. Indeed, for pi 5 p it is not a hyper-
bolic system, and even for physically relevant expressions

We now describe in more detail these two steps andof (p 2 pi) it is only conditionally hyperbolic. Hence insta-
introduce related notations. To simplify, we set pi 5 p, butbilities can occur in some situations. Additional physical
later, the interfacial pressure (3.29) will be considered.effects, that are not modeled here, counterbalance these

instabilities. But their explicit form is not settled precisely First step (hydrodynamical step). In the first step, we
and they can be added in each specific case. This is what we solve the two following systems, one for each phase k
do in specific applications. But here we restrict ourselves to (k 5 v, l),
the common model (2.1). Nevertheless, the mathematical
structure of this system gives some fundamental physical t(mk) 1 x(mkuk ) 5 0,
properties that we would like to keep at the numerical
level. As far as stability is concerned we wish to keep t(mkuk) 1 x(mku2

k 1 p̃k) 5 pkxak 1 akrkg, (3.1)
nonnegative densities, temperatures, pressure, and the

t(Ek) 1 x((Ek 1 p̃k)uk) 5 akrkguk ,void fraction (i.e., a 5 av) within the interval [0, 1]. Even
though we do not use it later, notice that this system is
also endowed with two entropy inequalities (one for each where
phase). In the case pi 5 p, and for a c-law (2.7) these
entropy inequalities write mk 5 akrk ,

Ek 5 akrk(ek 1 u2
k/2),

takrkSk 1 xakrkukSk # 0, Sk 5 ln
rck

k

p
. (2.8)

p̃k 5 akpk 5 (ck 2 1)mkek .
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The two systems will be discretized explicitly and then U n11
j 2 U n

j 1 s(F n
j11/2 2 F n

j21/2 ) 5 DtH n
j . (3.5)

they may be solved independently because these are un-
coupled. In order to explain this, we begin by dividing the spatial

These two systems can be written in the compact form domain into N cells denoted by Kj 5 ]xj21/2 , xj11/2[ called
control volumes. By choosing a mesh width Dx, a time step
Dt and s 5 Dt/Dx we haveUk

t
1

F(Uk)
x

5 H(Uk), (3.2)

xj21/2 5 ( j 2 1/2)Dx, j [ Z,
where the vector Uk is defined by UT

k 5 (mk, mkuk , Ek),
tn 5 nDt, n [ Z.k 5 v, l. In what follows, the terms due to gravity forces

will be ignored. In practice (see Section 5), these are
treated using an explicit scheme. For simplicity we take a uniform mesh with Dx constant,

although the method we discuss can be extended to vari-Second step (restoring equality of pressures). In the sec-
able meshes.ond step, we solve the two following coupled systems for

Classically the finite volume method produces approxi-k 5 v, l:
mations U n

j of the mean value of U on the cell [xj21/2 ,
xj11/2 ] at time tn.

tmk 5 0,
We assume that, at time tn, we know U n

j , an approxima-
t(mkuk) 5 0, (3.3) tion to the average of the solution to (3.4) on the cell

]xj21/2 , xj11/2[; and we wish to calculate U n11
j , the mean

tEk 5 2ptak .
value of an approximate solution at time tn11 5 tn 1 Dt.
We deduce (3.5) from (3.4), settingThus the method involves a splitting which reduces the

resolution of the full system (2.1) to classical hydrody-
namics (3.1) with source terms, and a rather simple prob- Un

j Q
1

Dx
Exj11/2

xj21/2

U(x, tn) dx, (3.6)
lem (3.3).

3.2. Discretization of the First Step Fn
j11/2 Q

1
Dt

Etn11

tn
F(U(xj11/2 , t)) dt, (3.7)

Next we explain how to solve the first step (3.1), i.e.,
the system of equations Hn

j Q
1

Dt Dx
Etn11

tn Exj11/2

xj21/2

H(U(x, t)) dx dt. (3.8)

U
t

1
F(U)

x
5 H(U), (3.4)

We now detail these approximations. We begin by the
fluxes F n

j11/2 . As is well known, the numerical fluxes
F n

j11/2 can be obtained through approximate Riemannwhere
solvers (see Harten, Lax, and Van Leer [7]). In practice,

U 5 (m, mu, E)T is the vector of conservative variables, we have tested the Roe solver [15] and a kinetic solver
F(U) 5 (mu, mu2 1 p̃, (E 1 p̃)u)T is the flux vector, [12]. But for tests where one of the volume fractions

can vanish, the kinetic method is preferred because of itsH(U) 5 (0, pxa, 0)T is the source term.
better behavior (see also the positivity results stated in

and Theorem 1). By contrast the Roe solver is known to be
unstable close to a vacuum, which means here a 5 0 or 1.E 5 m(e 1 u2/2),

In the case of three-point schemes, these numericalp̃ 5 (c 2 1)me.
fluxes have the form

We note that the system of Eqs. (3.4) is composed of two
physically different parts. The first one (the left-hand side) F n

j11/2 5 F(U n
j , U n

j11). (3.9)
is in conservative form, but the second (the right-hand
side) is in nonconservative form. At this level we would

And for the sake of completeness, we describe the sec-like to mention that contact discontinuities can occur but
ond scheme, namely the kinetic scheme. Consider the left-the equations stay meaningful; and for the applications we
hand side of the system (3.4), i.e.,have in mind, shock waves as in classical compressible

flows are not of primary interest.
We will use a classical finite volume approach and discre- U

t
1

F(U)
x

5 0. (3.10)
tize (3.4) in
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In order to describe the kinetic solver, we introduce the LEMMA 1. Let Dt be a small time step and t [ [tn, tn 1
Dt]. The quantities‘‘equilibrium functions’’ associated with the state vector

Un(x) which are defined by

m(x, t) 5 E
R

f(x, v, t) dv,
f n(x, v) 5 mn(x) Ïmn(x)/p̃n(x)

mu(x, t) 5 E
R

vf(x, v, t) dv, (3.20)
x ((v 2 un(x)) Ïmn(x)/p̃n(x)), (3.11)

E(x, t) 5 E
R
Sv2

2
f(x, v, t) 1 g(x, v, t)D dvg n(x, v) 5 lmn(x) Ïp̃n(x)/mn(x)

x ((v 2 un(x)) Ïmn(x)/p̃n(x)), (3.12)
are first order in Dt approximations of the solutions to (3.10).

Next assume that Un(x) is piecewise constant:with

Un(x) 5 Un
j 5 (mn

j , mn
j un

j , En
j ) for x [ ]xj21/2 · xj11/2[. (3.21)

l 5
3 2 c

2(c 2 1)
. (3.13)

In the finite volume approach, once the numerical flux
functions Fj11/2 in (3.7) which approximate the physicalHere x is a nonnegative even function that satisfies
fluxes at the interface between the cells j and j 1 1 are
known, the formula for updating the cell averages of theE

R
(1, w, w2)x(w) dw 5 (1, 0, 1). (3.14) conserved quantities corresponding to (3.10) is

The simplest choice (we will use in practice) is due to Un11
j 5 Un

j 2
Dt
Dx

(Fn
j11/2 2 Fn

j21/2). (3.22)
[12]; it reads

Assume the CFL condition (for the choice 3.15):
x(w) 5

1
2Ï3

1uw u#Ï3· . (3.15)

Dt # Dx/(uun(x)u 1 Ï3 Ïp̃n(x)/mn(x)) ;x [ R. (3.23)
But other choices are possible such as the physical Max-

By using (3.20) and the condition (3.23), the integrationwellian 1/Ï2f exp(2w2/2). We refer to [5, 7] for more
of (3.10) gives the flux F n

j11/2 (a three entries vector) whichdetails on the motivations for introducing this method and
is writtenother references.

We notice that the integration of the two functions de-
fined above with respect to the v variable yields F n

j11/2 5 F1(U n
j ) 1 F2(U n

j11), (3.24)

withmn(x) 5 E
R

f n(x, v) dv, (3.16)

F1(Uj) 5E
w$2ujÏmj /p̃j

mnun(x) 5 E
R

vf n(x, v) dv, (3.17)

En(x) 5 E
R
Sv2

2
f n(x, v) 1 gn(x, v)D dv, (3.18)

1
(uj 1 wÏp̃j /mj)

(uj 1 wÏp̃j /mj)2

(uj 1 wÏp̃j /mj)3/2 1
lp̃j

mj
(uj 1 wÏp̃j /mj)

2 (3.25)
and, instead of solving the system of Eqs. (3.10) we solve
the two following linear transport equations

mj x(w) dw.Ht f 1 vx f 5 0

f(x, v, tn) 5 f n(x, v)
and Htg 1 vxg 5 0

g(x, v, tn) 5 gn(x, v) Here we have generically denoted
(3.19)

U 5 (m, mu, E)T. (3.26)with t $ tn, (x, v) [ R2.
The following lemma is at the basis of the Boltzmann

schemes (Perthame [12]). The flux F2 is obtained by replacing ‘‘$’’ by ‘‘#’’ in
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the above integrals. As is proved in [12], this scheme is
(pxa)j 5 pjaj (1 2 aj)

1
Dx

Minmod(bj11 2 bj , bj 2 bj21),consistent for any function x which satisfies (3.14).
We now describe the discretization of the term H(U) 5 (3.31)

(0, pa/x, 0)T. This term plays an essential role in the
stability of the global scheme. We will treat it wisely and, where the Minmod function is defined by
thus, following the nature of physical phenomena and the
characteristics of the conservation law system (i.e., hyper- Minmod(a, b) 5 As(sgn(a) 1 sgn(b))min(uau, ubu).
bolic (pi ? p) or not (pi 5 p)). We could have used a two
fractional step-method which consists of integrating the

In the Case 1, we could have used the Minmod, insteadleft part of the system (3.1) in a first step and the right
of the centered formula (3.30). We prefer the centeredone in a second step. This method has been used for the
formula which gives sharper fronts. This is possible becausenozzle problem by several authors. For reasons we will see
the formula (3.29) brings more stability (hyperbolicity) tolater, we have preferred to integrate the two parts in a
the continuous system, compared to the case pi 5 p.single step.

Finally, the quantities computed from this first step areWe propose to discretize the term xa in the expression
mk , mkuk , and Ek (k 5 v, l). These quantities will bepxa (or pixa when pi ? p) as
identified using the superscript n 1 1/2.

3.3. Discretization of the Second Stepxa 5 a(1 2 a)x ln S a
1 2 aD . (3.27)

Next, it remains to discretize the two following cou-
pled systems:

Indeed we have observed that, when a (a 5 av , 1 2
a 5 al) is very small (say 1026), all the terms in the vapor
phase equations almost vanish, but not xa and this creates
instabilities. This also appears for a close to 1 for the liquid 5

tmv 5 0,

tmvuv 5 0,

tEv 5 2ptav ,

and 5
tml 5 0,

tmlul 5 0,

tEl 5 2ptal.

(3.32)
phase equations. With the interpretation (3.27) of pxa
(or pixa) we get rid of this. Next, it remains to discretize
(3.27). The physical quantities appearing in (3.27) will be
taken at time tn. Let This step can be performed cell by cell and thus we skip

the index j throughout this subsection. To ensure stability,
we will use an implicit method. First, we remark that the

bj 5 ln S aj

1 2 aj
D . (3.28) first two equations in each system can be omitted because

they only mean that the quantities they involve are time
invariant, i.e.,

We will discuss here two cases.

Case 1. pi ? p. In this case, pxa is replaced by
pixa 5 (p 2 (p 2 pi))xa in (3.1) (see (2.1)). The expres- 5mn11

v

(mvuv)n11

5 mn11/2
v ,

5 (mvuv)n11/2,
and 5mn11

l

(mlul)n11

5 mn11/2
l ,

5 (mlul)n11/2.sion of (p 2 pi) [2] is given by

(3.33)
p 2 pi 5 jrc(uv 2 ul)2, (3.29)

Thus we are reduced to studying
where j is a constant and rc is the continuous phase density.
Other expressions can be found in the literature (see [16, tEv 5 2ptav ,

(3.34)21]). Here we have used j 5 1 and rc 5 rv . Notice that,
tEl 5 2ptal .in practical tests, the resulting expression is very small nu-

merically.
We make some further simplifications before stating theCase 2. pi 5 p. The space discretization is different in
ultimate system to be discretized. Recall thatthe two cases. In Case 1, we use the centered formula,

Ek 5
(mkuk)2

2mk
1 mkek , k 5 v, l.(pixa)j 5 (pi)j aj (1 2 aj)

1
2 Dx

hbj11 2 bj21j. (3.30)

But in Case 2, we use the more stable formula, By using the equalities (3.33), the system (3.34) amounts to
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t(mvev) 5 2ptav ,
(3.35) an11 5

(1/(cl 2 1) 1 an)mn11/2
v en11/2

v 1 anmn11/2
l en11/2

l

(cl/cl 2 1)mn11/2
v en11/2

v 1 (cv/(cv 2 1))mn11/2
l en11/2

l
.

t(mlel) 5 2ptal.
(3.43)

Adding up the two equations of (3.35) each one (in view
Notice that although it does not seem to be, this expres-of (2.2)) gives

sion is indeed symmetric with respect to the two phases.
Next, the explicit expression of pn11 is obtained pluggingt(mvev) 1 t(mlel) 5 0. (3.36)
an11, given by (3.43), into (3.39).

We are now in a position to update all the main variables
To keep this fundamental conservation law, we discretize

involved in the system of equations, i.e. a, p, mv , mvuv ,
it as

Ev , ml , mlul , El and the variables involved in their expres-
sions, i.e. (rk , uk , ek , k 5 v, l).

(mvev)n11 1 (mlel)n11 5 (mvev)n11/2 1 (mlel)n11/2. (3.37)

4. PROPERTIES OF THE METHOD WHEN BASED ON
Next, using the relationship KINETIC SCHEMES

In this section, we give several theoretical properties ofp̃k 5 (ck 2 1)mkek , k 5 v, l, (3.38)
the method based on the kinetic scheme in Case 2, where
the Minmod discretization (3.31) of the term pxa wasthe terms in the left-hand side of (3.37); i.e., (mkek )n11 for
introduced to make up the lack of hyperbolicity. The hy-k 5 v, l, are replaced by (an11

k pn11)/(ck 2 1). An easy
perbolic case (Case 1) is not addressed here but strongcomputation shows that
numerical evidence assessed its stability properties.

This method preserves several basic properties of the
pn11 5

(mvev)n11/2 1 (mlel)n11/2

an11/(cv 2 1) 1 (1 2 an11)/(cl 2 1)
, (3.39) initial system. By using the finite-volume method and the

conservative variables for the computed unknowns, we
have conservation of total mass, momentum, and energy.

where a 5 av and (1 2 a) 5 al . We strengthen at first (3.23), setting
The unknowns are p and a. To compute them, we need

to state another equation; thus, consider the discretized
Dt # Dx/2(uun

j u 1 Ï3 Ïp̃n
j /mn

j ). (4.1)form of the first equation of (3.35)

The weak stability result is given by the following.(mvev)n11 2 (mvev)n11/2 5 2pn11(an11 2 ã). (3.40)
THEOREM 1. Suppose that at the time level tn, we have

The value ã should be chosen at time tn11/2, i.e. ã 5 an11/2, rn
k $ 0 for k 5 v, l; p n $ 0 and 0 , an

k , 1. Then, we get
and then the system (2.1) would be solved in two fractional rn11

k $ 0, p n11 $ 0 and 0 , an11
k , 1 under the CFL

steps. Now, an11/2 is unknown from the first step, since the conditions (4.1) and (4.2) (see the notations in the proof
computed variable is mn11/2

v 5 an11/2rn11/2
v and from this below)

relationship we cannot deduce an11/2. For this reason, we
set ã 5 an and, as a consequence, the system (2.1) is solved Dt

Dx
maxj,k

1
lk

uDbn
j u uun11/2

kj u #
1
2

, (4.2)in a single step. (To check this, add the discretized systems
of (3.1) (for k 5 v, l) to those of (3.3) (for k 5 v, l)). We
now have which is also implied by the condition acting only at time

level n:
(mvev)n11 2 (mvev)n11/2 5 2pn11(an11 2 an). (3.41)

Dt
Dx

maxj,k
1
lk

uDbn
j u Suun

kj u 1
Dt
Dx

M n
kjD#

1
4

. (4.3)Using (3.38), we get after some algebraic manipulations

Remarks. 1. These estimates are crude, but give apn11 5 mn11/2
v en11/2

v S cvan11

(cv 2 1)
2 anD21

. (3.42)
time-step of the order of the usual CFL condition. They
guarantee that a remains in ]0, 1[. The time-step could
become very small (as in usual monophasic gas dynamics)Finally, replacing pn11 in (3.39) by its expression in (3.42)

yields an equation with the unique unknown an11. Some but in practice this does not occur as we shall see even in
the separation problem (Section 5, Problem 1).tedious calculations give the explicit expression
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2. To the best of our knowledge these positivity results
mn11/2

j en11/2
j 1 un11/2

j
Dt
Dx

pn
j Dan

jare new and are directly inherited from the splitting
method we have proposed.

5
1

Dx
E

R3Kj

1
2

(v 2 un11/2
j )2f(x, v, tn11/2) (4.7)3. Dbn

j is given by (see 3.31)

1
1

Dx
E

R3Kj

g(x, v, tn11/2) dv dx.
Dbn

j 5 Minmod Sln San
j11(1 2 an

j )
an

j (1 2 an
j11)D ,

(4.4) The condition (4.1) implies that uvu(Dt/Dx) # As and, after
integration of f(x, v, t n11/2) 5 f n(x 2 vDt, v) and3 ln San

j (1 2 an
j21)

an
j21(1 2 an

j )DD .
g(x, v, t n11/2) 5 gn(x 2 vDt, v) over R 3 Kj , we obtain
after some tedious but easy calculations

Proof of Theorem 1. We consider the phase associated,
mn11/2

j $ Asmn
j . 0, (4.8)for instance, with the void fraction a. We know that

f(x, v, tn) and g(x, v, tn) are nonnegative functions. Since
and furthermore,they solve transport equations we also have f(x, v,

tn11/2) $ 0 and g(x, v, tn11/2) $ 0. And thus,
E

R3Kj

g(x, v, tn11/2) dv dx $
1
2

lan
j pn

j . (4.9)

mn11/2
j 5

1
Dx

E
R3Kj

f(x, v, tn11/2) dv dx $ 0. (4.5)
Therefore, using (4.9) we get from (4.7):

mn11/2
j en11/2

j $
1
2

lan
j pn

j 2
Dt
Dx

pn
j Dan

j un11/2
j . (4.10)We write

Notice that pxa has been transformed into pa(1 2 a)x b
E n11/2

j 5 mn11/2
j S1

2
(un11/2

j )2 1 en11/2
j D (see (3.27)), with b 5 ln(a/(1 2 a)). Denoting Dbn

j /Dx the
discretization associated with xb, the inequality (4.10) re-
duces to

5
1

Dx
E

R3Kj
Fv2

2
f(x, v, tn11/2) 1 g(x, v, tn11/2)G dv dx

mn11/2
j en11/2

j $ an
j pn

j

(4.11)
5

1
Dx

E
R3Kj

1
2

(v 2 un11/2
j )2 f(x, v, tn11/2)

3 S1
2

l 2
Dt
Dx

(1 2 an
j ) Dbn

j un11/2
j D.

2
1
2

mn11/2
j (un11/2

j )2

In practice, the velocity uun11/2
j u is a finite quantity and the

condition (4.2) is sufficient to ensure (see (4.7))
1 (un11/2

j )
1

Dx
E

R3Kj

vf(x, v, tn11/2)
en11/2

j $ 0. (4.12)

1
1

Dx
E

R3Kj

g(x, v, tn11/2) dv dx. Now, we have proved that the variables mn11/2
k and

en11/2
k are nonnegative.

Since cl . 1, cv . 1, and 0 , an , 1, we have
Now, following (3.5) and (3.20) we have

0 ,
1

cl 2 1
1 an ,

cl

cl 2 1
, 0 , an ,

cv

cv 2 1
, (4.13)

1
Dx

E
R3Kj

vf(x, v, tn11/2) dx dv
(4.6) this implies that

5 mn11/2
j un11/2

j 2
Dt
Dx

pn
j Dan

j ,
0 , S 1

cl 2 1
1 anDmn11/2

v en11/2
v 1 anmn11/2

l en11/2
l

(4.14)
where pn

j (Dan
j /Dx) is the discretization associated with

,
cl

cl 2 1
mn11/2

v en11/2
v 1

cv

cv 2 1
mn11/2

l en11/2
lpxa. This yields
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mn11/2
j un11/2

j 5 mn
j un

j

1
Dt
Dx FEv$0

v2( fj21(v) 2 fj(v)) dv
(4.19)

1 E
v#0

v2( fj(v) 2 fj11(v)) dvG
2

Dt
Dx

pn
j Dan

j ,

and we have only to consider the case where un11/2
j and

Dan
j have the same sign, say nonnegative. Then

mn11/2
j un11/2

j # mn
j un

j 1
Dt
Dx FEv$0

v2fj21(v) dv
(4.20)

1 E
v#0

v2fj (v) dvG
and, using (4.8), we have

FIG. 1. Water faucet problem evolution.

un11/2
j # 2 Suun

j u 1
Dt
Dx

M̃ n
j

mn
j
D , (4.21)

Using (3.43), it follows that with

0 , an11 , 1. (4.15)
M̃ n

j 5 max SE
v

v2( fj21(v)

Following (4.15) and (3.39) we get
1 fj (v)) dv, E

v
v2( fj11(v) 1 fj (v)) dvD (4.22)

pn11 $ 0. (4.16)
5 mn

j (uun
j u2 1 en

j )

Finally, (3.33) and (4.15) give 1 maxj (mn
j21(uun

j21u2 1 en
j21), mn

j11(uun
j11u2 1 en

j11)).

rn11
k $ 0 (k 5 v, l). (4.17)

Hence, we have proved the result under the condition (4.2).
Now, we will attempt to upperbound uun11/2

j u in order to
recover (4.3). We argue as follows:

1
Dx

E
R3Kj

vf(x, v, tn11/2) dx dv

5 mn
j un

j 1
Dt
Dx FEv$0

v2fj21(v) dv 2 E
v$0

v2fj(v) dv (4.18)

1 E
v#0

v2fj(v) dv 2 E
v#0

v2fj11(v) dvG .

FIG. 2. Void fraction in space-time plane (Case 1), 50 cells.Following (4.6) and (4.18), we obtain
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FIG. 3. Void fraction history, 50 cells.

In this formula, the ‘‘max’’ comes from the necessity to 5. NUMERICAL RESULTS
consider also the other possibility when un11/2

j and Dan
j

Problem 1: Sedimentationare negative.
We can rewrite (4.21) as This problem represents a very simplified physical phe-

nomena: separation of air and water by gravity in a vertical
tube. The objective of this problem is to check the capabil-uun11/2

j u # 2 Suun
j u 1

Dt
Dx

M n
j D , (4.23)

ity of the model and of the chosen numerical approach to
describe countercurrent flow conditions and the occur-
rence of strong void gradients which are typical of manywith
situations where phase separation phenomena are domi-
nating.M n

j 5 M̃ n
j /mn

j . (4.24)
The test consists of a vertical tube of 7.5 m length. In

the initial state, the tube is filled with a homogeneous two-
phase mixture (air, water) of constant void fraction of
a 5 0.5; the velocities are uv 5 ul 5 0 m/s. The boundary
conditions at the inlet and the outlet are nul debits for the
vapor and the liquid; i.e., the velocities of the two fluids
are forced to equal zero at the two ends of the duct, since
these are closed. The phase separation is due to gravity
forces only. The liquid phase falls down to the bottom
of the tube, while the gas phase comes up to the top of
the tube.

All the presented results have been achieved using a
constant ratio Dt/Dx 5 6.0E 2 4. Figures 2 and 4 below
show in the space-time plane the predicted values for
the void fraction in Case 1 and Case 2 (i.e., pi ? p and
pi 5 p). The comparison between the steady-state solution
for the two cases is given in Fig. 5, this figure clearly indi-

FIG. 4. Void fraction in space-time plane (Case 2), 50 cells. cates that the steady-state solution in Case 1 is much closer
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FIG. 5. Comparison between steady-state solutions, t 5 10 s, 50 cells.

to the expected analytical steady-state solution than in transient period; the occurrence of quasi-stationary condi-
tions is achieved once the two fronts have merged at theCase 2.

The void fraction distribution along the vertical height middle section of the tube.
Figure 6 shows the spatial convergence of the voidat different time levels is shown in Fig. 3, this figure indi-

cates an upward and downward directed void front in the fraction at the steady-state. We give below the errors

FIG. 6. Spatial convergence of steady-state solution (Case 1), t 5 6.5 s.
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ment of a static pressure gradient in the gas and liquid
regions. Figure 8 compares the steady pressure profiles in
Cases 1 and 2. Not only does Case 1, because of the cen-
tered discretization, give an overshoot, as can be seen in
Fig. 8, but also it is very sensitive to the number of computa-
tional cells. These results can be compared to those ob-
tained by [18].

Problem 2: Water Faucet

The water faucet problem (see [13]) consists of a vertical
tube 12 m in length and 1 m in diameter. The top has a fixed
inflow rate of water at a velocity of 10 m/s, temperature ofFIG. 7. Pressure in space-time plane (Case 2), 50 cells.
508C, and a liquid volume fraction of 0.8. The bottom of
the tube is open to the ambiant pressure and the top of
the tube is closed to vapor flow. The problem is illustrated

in L1 norm, choosing the finest grid solution as the refer- schematically in Fig. 1.
ence one. Initially, the tube is filled with a uniform column of water

at a velocity of 10 m/s surrounded by stagnant vapor, such
that the vapor volume fraction is 0.2. The thermodynamic

Error1 Error2 u properties of the system at the initial state are assumed
constant at values appropriate for air–water mixture and0.2090 0.1069 0.9662
are 508C for the temperature and 105 (Pascal) for the
pressure.

The velocity boundary conditions at the inlet areWhere error1 5 ia25 2 a100 i1 and error2 5 ia50 2 a100 i1 ,
the subscripts represent the number of cells. Here u 5 10 m/s for the liquid and 0.0 m/s for the vapor. The volume

fraction of the vapor at the inlet is set constant at 0.2. Thelog(error1/error2)/log(h1/h2 ) provides an estimate of the
order of accuracy (h1 5 7.5/25 and h2 5 7.5/50). only outflow boundary condition at the bottom of the

tube is constant pressure at 105 (Pascal). These specificFigure 7 shows the predicted values for the pressure in
space-time plane in Case 2. One can notice the establish- boundary conditions are implemented using the solution

FIG. 8. Comparison between steady-state solutions, t 5 10 s, 50 cells.
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FIG. 9. Transient void fraction profile, 24 cells.

of a half-Riemann problem which is described in detail in This analytical solution was used as a code test problem in
[14]. The objective of this problem is to test the stability[1]. Here, for physical considerations (see [13]), we are led

to choose pi 5 p. The calculation is carried out until a and the convergence of the numerical solution method.
The diffusive character of the numerical method is alsosteady flow is attained. This transient problem has a partic-

ularly simple analytical solution when pressure variation tested since a discontinuity in the void fraction is propa-
gated through the solution space.in the vapor (and, hence, in the liquid) is ignored (see [13]).

FIG. 10. Convergence void fraction profile, t 5 0.4 s.
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FIG. 11. Convergence void fraction profile, t 5 0.4 s, 48 cells.

All the computations have been achieved using a con- down the tube until the wave has completely passed out
of the tube and the steady-state profile remains.stant ratio Dt/Dx 5 5.0E 2 4. The void fraction as a func-

tion of space at different times is shown in Fig. 9. This In order to check the convergence and the stability of
the scheme, computations have been made using a discreti-figure shows the dynamic propagation of the void profile

FIG. 12. Transient liquid velocity profile, 96 cells.
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FIG. 13. Pressure profile.

zation with 12, 24, 48, 100, and 200 cells. The void fraction
a(x, t) 5 51 2

ae
l ue

l

Ï2gx 1 (ue
l )2

, if x # ue
l t 1

gt2

2
,

0.2, otherwise,
(5.1)profiles for various discretisations are compared to the

above-mentioned analytical solution (see Fig. 10), which
where ue

l 5 10 m/s and ae
l 5 0.8.is explicitly given by

FIG. 14. Vapor enthalpy profile.
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FIG. 15. Liquid enthalpy profile.

The L1 norm errors between the approximate and ana- Notice, however, that the mathematical meaning of this
problem with shocks is quite imprecise (see [3]), and therelytical solutions are displayed in the following table:
is no physical interpretation for this case because the
thermodynamical disequilibrium requires exchange terms

Error1 Error2 Error3 Error4 Error5 u between phases. The computations have been achieved
using 200 cells and a constant ratio Dt/Dx 5 5.0E 2 4. In

0.4761 0.3796 0.2793 0.2141 0.1674 0.3717
Figs. 13, 14, and 15, we show the pressure and enthalpies
profiles at time t 5 0.75E 2 03.

with errori 5 iai 2 aanalytical i and i refers to the vari-
ACKNOWLEDGMENTSous discretizations (i 5 1 for 12 cells, i 5 2 for 24 and
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